
Sketching Count Statistics for
Approximate Bayesian Inference

Diana Cai and Zoe Ashwood

Modern data analysis problems
● Massive in size, possible infinite data stream
● High dimensional
● Complex models are needed for modeling

Probabilistic modeling and Bayesian inference
● Powerful for identifying interpretable, latent structure in data
● Provides a framework for making predictions about future observations
● Incorporate prior knowledge, share statistical strength across model

1

This project: we explore approximating the sufficient statistics in probabilistic
models using a hashing-based probabilistic data structure (count-min sketch)
perform Bayesian inference in two ubiquitous probabilistic models

Count-min sketch
Data stream x1, …, xM of tokens in {1,...,K}

N hash functions randomly generated from a pairwise-independent hash family

hn: [K] -> [J], J << K, n=1,...,N

Data structure: N x J counter array: C[n,j]

Update(C, k): hash k and update the counts

C[n,hn(k)] += 1, for all n=1,...,N

Query(C, k): returns estimate for the count of k

For all n, return the minimum count C[n,hn(k)]

[Cormode and Muthukrishnan, 2003]

h1

h2

h3

4

Count-min sketch
Data stream x1, …, xM of tokens in {1,...,K}

N hash functions randomly generated from a pairwise-independent hash family

hn: [K] -> [J], J << K, n=1,...,N

Data structure: N x J counter array: C[n,j]

Update(C, k): hash k and update the counts

C[n,hn(k)] += 1, for all n=1,...,N

Query(C, k): returns estimate for the count of k

For all n, return the minimum count C[n,hn(k)]

[Cormode and Muthukrishnan, 2003]

h1

h2

h3

4

Count-min sketch
Data stream x1, …, xM of tokens in {1,...,K}

N hash functions randomly generated from a pairwise-independent hash family

hn: [K] -> [J], J << K, n=1,...,N

Data structure: N x J counter array: C[n,j]

Update(C, k): hash k and update the counts

C[n,hn(k)] += 1, for all n=1,...,N

Query(C, k): returns estimate for the count of k

For all n, return the minimum count C[n,hn(k)]

[Cormode and Muthukrishnan, 2003]

For a random hash h in the family,
Pr(h(x)=h(y)) at most 1/J

h1

h2

h3

4

Count-min sketch
Data stream x1, …, xM of tokens in {1,...,K}

N hash functions randomly generated from a pairwise-independent hash family

hn: [K] -> [J], J << K, n=1,...,N

Data structure: N x J counter array: C[n,j]

Update(C, k): hash k and update the counts

C[n,hn(k)] += 1, for all n=1,...,N

Query(C, k): returns estimate for the count of k

For all n, return the minimum count C[n,hn(k)]

[Cormode and Muthukrishnan, 2003]

For a random hash h in the family,
Pr(h(x)=h(y)) at most 1/J

h1

h2

h3

4

Count-min sketch
Data stream x1, …, xM of tokens in {1,...,K}

N hash functions randomly generated from a pairwise-independent hash family

hn: [K] -> [J], J << K, n=1,...,N

Data structure: N x J counter array: C[n,j]

Update(C, k): hash k and update the counts

C[n,hn(k)] += 1, for all n=1,...,N

Query(C, k): returns estimate for the count of k

For all n, return the minimum count C[n,hn(k)]

[Cormode and Muthukrishnan, 2003]

For a random hash h in the family,
Pr(h(x)=h(y)) at most 1/J

h1

h2

h3

h1(k) = 1
h2(k) = 4
h3(k) = 2

4

Count-min sketch
Data stream x1, …, xM of tokens in {1,...,K}

N hash functions randomly generated from a pairwise-independent hash family

hn: [K] -> [J], J << K, n=1,...,N

Data structure: N x J counter array: C[n,j]

Update(C, k): hash k and update the counts

C[n,hn(k)] += 1, for all n=1,...,N

Query(C, k): returns estimate for the count of k

For all n, return the minimum count C[n,hn(k)]

[Cormode and Muthukrishnan, 2003]

For a random hash h in the family,
Pr(h(x)=h(y)) at most 1/J

+1h1

h2

h3

h1(k) = 1
h2(k) = 4
h3(k) = 2

4

Count-min sketch
Data stream x1, …, xM of tokens in {1,...,K}

N hash functions randomly generated from a pairwise-independent hash family

hn: [K] -> [J], J << K, n=1,...,N

Data structure: N x J counter array: C[n,j]

Update(C, k): hash k and update the counts

C[n,hn(k)] += 1, for all n=1,...,N

Query(C, k): returns estimate for the count of k

For all n, return the minimum count C[n,hn(k)]

[Cormode and Muthukrishnan, 2003]

For a random hash h in the family,
Pr(h(x)=h(y)) at most 1/J

+1

+1

h1

h2

h3

h1(k) = 1
h2(k) = 4
h3(k) = 2

4

Count-min sketch
Data stream x1, …, xM of tokens in {1,...,K}

N hash functions randomly generated from a pairwise-independent hash family

hn: [K] -> [J], J << K, n=1,...,N

Data structure: N x J counter array: C[n,j]

Update(C, k): hash k and update the counts

C[n,hn(k)] += 1, for all n=1,...,N

Query(C, k): returns estimate for the count of k

For all n, return the minimum count C[n,hn(k)]

[Cormode and Muthukrishnan, 2003]

For a random hash h in the family,
Pr(h(x)=h(y)) at most 1/J

+1

+1

+1

h1

h2

h3

h1(k) = 1
h2(k) = 4
h3(k) = 2

4

Count-min sketch
Data stream x1, …, xM of tokens in {1,...,K}

N hash functions randomly generated from a pairwise-independent hash family

hn: [K] -> [J], J << K, n=1,...,N

Data structure: N x J counter array: C[n,j]

Update(C, k): hash k and update the counts

C[n,hn(k)] += 1, for all n=1,...,N

Query(C, k): returns estimate for the count of k

For all n, return the minimum count C[n,hn(k)]

[Cormode and Muthukrishnan, 2003]

For a random hash h in the family,
Pr(h(x)=h(y)) at most 1/J

+1

+1

+1

h1

h2

h3

h1(k) = 1
h2(k) = 4
h3(k) = 2

4

Count-min sketch
Data stream x1, …, xM of tokens in {1,...,K}

N hash functions randomly generated from a pairwise-independent hash family

hn: [K] -> [J], J << K, n=1,...,N

Data structure: N x J counter array: C[n,j]

Update(C, k): hash k and update the counts

C[n,hn(k)] += 1, for all n=1,...,N

Query(C, k): returns estimate for the count of k

For all n, return the minimum count C[n,hn(k)]

[Cormode and Muthukrishnan, 2003]

For a random hash h in the family,
Pr(h(x)=h(y)) at most 1/J

10

3

5

h1

h2

h3

h1(k) = 1
h2(k) = 4
h3(k) = 2

sketch after M observations:

4

Count-min sketch
Data stream x1, …, xM of tokens in {1,...,K}

N hash functions randomly generated from a pairwise-independent hash family

hn: [K] -> [J], J << K, n=1,...,N

Data structure: N x J counter array: C[n,j]

Update(C, k): hash k and update the counts

C[n,hn(k)] += 1, for all n=1,...,N

Query(C, k): returns estimate for the count of k

For all n, return the minimum count C[n,hn(k)]

[Cormode and Muthukrishnan, 2003]

For a random hash h in the family,
Pr(h(x)=h(y)) at most 1/J

10

3

5

h1

h2

h3

h1(k) = 1
h2(k) = 4
h3(k) = 2

lots of
collisions

sketch after M observations:

4

Count-min sketch
Data stream x1, …, xM of tokens in {1,...,K}

N hash functions randomly generated from a pairwise-independent hash family

hn: [K] -> [J], J << K, n=1,...,N

Data structure: N x J counter array: C[n,j]

Update(C, k): hash k and update the counts

C[n,hn(k)] += 1, for all n=1,...,N

Query(C, k): returns estimate for the count of k

For all n, return the minimum count C[n,hn(k)]

[Cormode and Muthukrishnan, 2003]

For a random hash h in the family,
Pr(h(x)=h(y)) at most 1/J

10

3

5

h1

h2

h3

h1(k) = 1
h2(k) = 4
h3(k) = 2

sketch after M observations:

4

1. The estimated count ≥ true count

observed count = true count + counts of colliding tokens

⇒ estimated count = minimum observed count > true count

1. With probability 1 - exp(-N),

estimated count ≤ true count + e/J * M

Proof sketch:
Xkn := sum of counts colliding with k
E[Xkn] ≤ 1/J * M (expected colliding mass)
By Markov’s inequality,

Pr(∀n, {Xkn > e * E[Xkn]}) ≤ exp(-N)

Count-min sketch analysis [Cormode and Muthukrishnan, 2003]

100

5

50

h1

h2

h3

lots of
collisions

5

1. The estimated count ≥ true count

observed count = true count + counts of colliding tokens

⇒ estimated count := minimum observed count ≥ true count

1. With probability 1 - exp(-N),

estimated count ≤ true count + e/J * M

Proof sketch:
Xkn := sum of counts colliding with k
E[Xkn] ≤ 1/J * M (expected colliding mass)
By Markov’s inequality,

Pr(∀n, {Xkn > e * E[Xkn]}) ≤ exp(-N)

Count-min sketch analysis [Cormode and Muthukrishnan, 2003]

100

5

50

h1

h2

h3

minimum observed count (estimate)
only equals true count if no collisions

5

1. The estimated count ≥ true count

observed count = true count + counts of colliding tokens

⇒ estimated count := minimum observed count ≥ true count

1. With probability 1 - exp(-N),

estimated count ≤ true count + (e/J) * M

Proof sketch:
Xkn := counts tokens colliding with k on hn = observed - true
E[Xkn] ≤ 1/J * M (expected colliding mass)
Pr(estimate > true + e/J * M) = Pr(∀n, {Xkn > e * E[Xkn]}) ≤ exp(-N)

Count-min sketch analysis [Cormode and Muthukrishnan, 2003]

N: # of hash functions
J: range of hash function
M: total # of tokens

Markov’s
inequality

5

1. The estimated count ≥ true count

observed count = true count + counts of colliding tokens

⇒ estimated count := minimum observed count ≥ true count

1. With probability 1 - exp(-N),

estimated count ≤ true count + (e/J) * M [Homework 1, Q2!]

Proof sketch:
Xkn := counts tokens colliding with k on hn = observed - true
E[Xkn] ≤ (1/J) * M (expected colliding mass)
Pr(estimate > true + (e/J) * M) = Pr(∀n, {Xkn > e * E[Xkn]}) ≤ exp(-N)

Count-min sketch analysis [Cormode and Muthukrishnan, 2003]

N: # of hash functions
J: range of hash function
M: total # of tokens

Markov’s
inequality

5

Dirichlet-multinomial (DM) model
Multinomial occupancy scheme: K bins, M balls thrown independently in each bin
Probability !k of landing into the kth bin

Let x1,...,xM ~ Multinomial(θ). (M tokens in [K])

Under the DM model, we assume that the probabilities are random: ! ~ DirichletK(α)

Goal is to compute the posterior distribution using Bayes’ rule:

p(! | x1,...,xM) = p(!) p(x1,...,xM | !) = Dirichlet(! | " + c), where c =
(c1,...,ck)

Predictive distribution: p(xM+1 = k | x1,...,xM) = ∫ p(xM+1) p(! | x1,...,xM) d!

! ∈ △K

6

Sketching multinomial counts
For the DM model, we just have to keep track of the posterior through the
sufficient statistic vector c, i.e., the counts of the tokens.

In a streaming setting, we can directly apply the CMsketch for inference:

for t = 1, 2, ...

1. Observe xt

2. Update(C, xt): (hash xt and update all the counters)
3. Evaluate predictive distribution

p(xM+1= k | x1,...,xM) = (! + ĉk) (∑j !j + ĉj)-1

6

CM sketch simulations on multinomial tokens
Generated 10K size dataset from the Dirichlet-multinomial model

Applied the CMsketch (N hash functions with range J) to approximate the counts
7

K=1000 K=10,000

CM sketch simulations on multinomial tokens
M=10,000; K=1000
N hash functions, J range

epsilon(k) := (ĉk- ck) / M

plotted mean over all k

7

2*SD of
epsilon(k)
over k

For 1 trial:

too
much
space

1 hash function: errors are
much worse, more variance

CM sketch simulations on multinomial tokens
M=10,000; K=10,000
N hash functions, J range

epsilon(k) := (ĉk- ck) / M

plotted mean over all k

7

2*SD of
epsilon(k)
over k

For 1 trial:

too
much
space

CM sketch simulations on multinomial tokens
M=10,000; K=1000; N hash functions, J range

MAE(ĉ,c) = sum(ĉk- ck) / K
For 20 trials: (mean over trials, sd computed over trials)

7

CM sketch simulations on multinomial tokens
M=10,000; K=10,000; N hash functions, J range

MAE(ĉ,c) = sum(ĉk- ck) / K
For 20 trials: (mean over trials, sd computed over trials)

7

CM sketch simulations on multinomial tokens
M=10,000; K=10,000;
N hash functions, J=1000

Posterior approximation:
1-step ahead
predictive probabilities
(streaming)

7

CM sketch simulations on multinomial tokens
M=10,000; K=10,000;
N hash functions

Posterior approximation:
1-step ahead
predictive probabilities
(streaming)

7

CM sketch simulations on multinomial tokens
M=10,000; K=10,000; N hash functions, J range
Posterior approximation: MAP estimate (the mode of posterior distribution)

7

Topic modeling with Latent Dirichlet Allocation (LDA)
● Document corpus: D documents, over vocabulary set [N]
● Topic: probability distribution over words in the vocabulary set
● Goal: uncover K topics in corpus

8

Image: [Blei, 2012]

Topic modeling with Latent Dirichlet Allocation (LDA)
● K topics, D documents (each of length n words)
● Each topic is a distribution over the words in the vocabulary set [N]

Draw topic !k ~ DirichletN(.), k = 1,...,K, (!k ∈ △N)

● Each document contains some proportion of the topics

Draw $d ~ DirichletK(.), d = 1,..., D, ($d∈ △K)

● For the jth word in document d, assign that word to a topic

Draw zdj ~ Multinomial($d), j = 1, …, n, (zdj∈ [K])

● Each word in a document is then drawn from that topic

Draw wdj ~ Multinomial(!i), where i = zdj, j = 1,...n, (wdj ∈ [N])
9

Gibbs sampling with approximate count statistics
● We want to know the posterior:

● We can write analytic form using model assumptions
● But cannot evaluate on any real corpus: sum of Kn terms in denominator is

intractable (n is number of words in entire corpus)
● Must use an approximation method: can use Gibbs sampling
● Iterative algorithm that is guaranteed to converge to the true posterior

10

● T iterations; each iteration involves sampling a new topic assignment for each
word in the corpus

● The distribution that the topic assignment is sampled from is constantly being
updated

● 5 data structures involved: one is nk, w, a matrix in RKxN, containing the
number of times word w appears in topic k. Problem: too large for large
vocabularies, N.

● Core idea: can we approximate nk, w with K count-min sketches? How is the
posterior distribution, affected? Can we still recover the topics
in a corpus?

Gibbs sampling with approximate count statistics

11

Topic-word probabilities and sketching
● With probability , counts are in range:

● Now: we want to estimate topic-word probabilities,

● With same high probability, these are in range:

12

Topic-word probabilities and sketching

13

N = 2500
(vocabulary size)

J: range of hash
functions

LDA Toy Corpus: 100,000 words; N = 2500

14

LDA Toy Corpus: 100,000 words; N = 2500

15

Results: Conditional Loglikelihood of Corpus
(Larger values are better)

16

Recall Topics:

17

Results: Recovered Topics - without sketch

18

Results: Recovered Topics - with sketch
(memory use ⅘ of vocabulary: H = 2, J = 1000)

19

Conclusions and Future Directions

● Demonstrated incorporation of count-min sketch into inference algorithms for

two ubiquitous probabilistic models.

● Useful when number of unique tokens (DM case) or vocabulary size (LDA) is

too large to be stored in memory

● Were able to recover posterior probabilities in both cases:
○ DM-case: stream of M tokens. Were able to recover probability, θk, that kth unique token

appears in stream

○ LDA: were able to recover latent topics in toy corpus

● In future:
○ Applying LDA sketch-based inference on different document corpuses: corpuses with denser

topics and on real-world corpuses

○ Investigating additional sketches: we are interested in proportions, not counts. Are there

sketches that are better at preserving proportions?

○ Applying LDA sketch-based inference in streaming setting

20

Thanks!

Dirichlet-multinomial (DM) model
Multinomial occupancy scheme: K bins, M balls thrown independently in each bin
Probability !k of landing into the kth bin

Let x1,...,xM be M tokens in [K]. Likelihood has a Categorical(θ) distribution:

p(x1,...,xM | !) = ∏n∏k !k1(xm=k) = ∏k !kck, where ck := # of balls in kth bin

Under the DM model, we assume that the probabilities are random: ! ~ DirichletK(α)

Goal is to compute the posterior distribution using Bayes’ rule:

p(! | x1,...,xM) = p(!) p(x1,...,xM | !) = Dirichlet(! | " + c), where c =
(c1,...,ck)

Predictive distribution: p(xM+1 = k | x1,...,xM) = ∫ p(xM+1) p(! | x1,...,xM) d!

! ∈ △K

6

CM sketch simulations on multinomial tokens
M=10,000; K=10,000
N hash functions, J range

epsilon(k) := (ĉk- ck) / M

plotted mean over all k

7

2*SD of
epsilon(k)
over k

For 1 trial:

too
much
space

