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Modern data analysis problems

e Massive in size, possible infinite data stream
e High dimensional
e Complex models are needed for modeling

Probabilistic modeling and Bayesian inference

e Powerful for identifying interpretable, latent structure in data
e Provides a framework for making predictions about future observations
e Incorporate prior knowledge, share statistical strength across model

This project: we explore approximating the sufficient statistics in probabilistic
models using a hashing-based probabilistic data structure (count-min sketch)
perform Bayesian inference in two ubiquitous probabilistic models
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N hash functions randomly generated from a pairwise-independent hash family

ha [K]->[J], J<<K, n=1,..N
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) For a random hash h in the family,
Data stream xj, ..., X\ of tokens in {1,...,K} / Pr(h(x)=h(y)) at most 1/J

N hash functions randomly generated from a pairwise-independent hash family

ha [K]->[J], J<<K, n=1,..N

Data structure: N x J counter array: C[n,j] he | +1
h
Update(C, k): hash k and update the counts i
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C[n,hy(k)] +=1, for all n=1,...,N
h,(k) = 1
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) For a random hash h in the family,
Data stream xj, ..., X\ of tokens in {1,...,K} / Pr(h(x)=h(y)) at most 1/J

N hash functions randomly generated from a pairwise-independent hash family

h,: [K]->[J], J<<K, n=1,..,N sketch after M observations:
Data structure: N x J counter array: C[n,j] hy 110
h 3
Update(C, k): hash k and update the counts i
h 5
Cln,h,(k)] += 1, foralln=1,...N 3
hy(k) =
Query(C, k): returns estimate for the count of k lots of ha(k) =4
collisions a(k) =2

For all n, return the minimum count C[n,h, (k)]
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1. The estimated count 2 true count

observed count = true count + counts of colliding tokens

= estimated count := minimum observed count = true count

h, | 100

minimum observed count (estimate)
only equals true count if no collisions
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1. The estimated count 2 true count

N: # of hash functions

observed count = true count + counts of colliding toker| ¥: range of hash function
M: total # of tokens

= estimated count := minimum observed count = true count

1. With probability 1 - exp(-N),

estimated count < true count + (e/J) * M
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1. The estimated count 2 true count

N: # of hash functions

observed count = true count + counts of colliding toker| ¥: range of hash function
M: total # of tokens

= estimated count := minimum observed count = true count

1. With probability 1 - exp(-N),

estimated count < true count + (e/J) * M [Homework 1, Q2!]

Proof sketch:
X := counts tokens colliding with k on h, = observed - true m:;t%‘l’@
E[Xw] <(1/J) * M (expected colliding mass) /

Pr(estimate > true + (e/J) * M) = Pr(vn, {Xi, > € * E[X«]}) < exp(-N)



Dirichlet-multinomial (DM) model

Multinomial occupancy scheme: K bins, M balls thrown independently in each bin
Probability 8, of landing into the kt" bin

Let Xy4,...,Xpm ~ Multinomial(@). (M tokens in [K])

Under the DM model, we assume that the probabilities are random: 6 ~ Dirichletk(a)

K
Goal is to compute the posterior distribution using Bayes’ rule: ve

P(O | X1,...,Xm) = p(8) p(X4,...,xm | @) = Dirichlet(6 | a + ¢), where c =
(C1,...,Ck)

Predictive distribution: p(Xy+1 = K | X1,...,Xm) =j P(Xm+1) P( O | X1,...,Xm) dO




Sketching multinomial counts

For the DM model, we just have to keep track of the posterior through the
sufficient statistic vector c, i.e., the counts of the tokens.

In a streaming setting, we can directly apply the CMsketch for inference:
fort=1, 2, ...

1. Observe x;
2. Update(C, x;): (hash x; and update all the counters)
3. Evaluate predictive distribution

P(Xm+1= K | X1,....Xm) = (a + &) (2 a5 + €)™



CM sketch simulations on multinomial tokens

Generated 10K size dataset from the Dirichlet-multinomial model
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Applied the CMsketch (N hash functions with range J) to approximate the counts



CM sketch simulations on multinomial tokens

M=10,000; K=1000
N hash functions, J range

epsilon(k) := (- cx) / M

plotted mean over all k
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CM sketch simulations on multinomial tokens

For 1 trial:

M=10,000; K=10,000 Dot |
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absolute error

CM sketch simulations on multinomial tokens

M=10,000; K=1000; N hash functions, J range
MAE(C,c) = sum(C«-cx) / K
For 20 trials: (mean over trials, sd computed over trials)
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CM sketch simulations on multinomial tokens

M=10,000; K=10,000; N hash functions, J range
MAE(C,c) = sum(C«-cx) / K
For 20 trials: (mean over trials, sd computed over trials)
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CM sketch simulations on multinomial tokens
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CM sketch simulations on multinomial tokens
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CM sketch simulations on multinomial tokens

M=10,000; K=10,000; N hash functions, J range
Posterior approximation: MAP estimate (the mode of posterior distribution)
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Topic modeling with Latent Dirichlet Allocation (LDA)

e Document corpus: D documents, over vocabulary set [N]
e Topic: probability distribution over words in the vocabulary set
e Goal: uncover K topics in corpus Image: [Blei, 2012]
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Topic modeling with Latent Dirichlet Allocation (LDA)

e K topics, D documents (each of length n words)
e Each topic is a distribution over the words in the vocabulary set [N]

Draw topic By ~ Dirichlety(.), k=1,....K, (Bx € AN)
e Each document contains some proportion of the topics

Draw 64 ~ Dirichletk(.), d=1,...,D, (64€ AK)
e For the jth word in document d, assign that word to a topic

Draw z4 ~ Multinomial(84), j=1,....,n, (Zg€ [K])
e Each word in a document is then drawn from that topic

Draw wg ~ Multinomial(g;), where i=zy, j=1,..n, (wg € [N])
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Gibbs sampling with approximate count statistics
e \We want to know the posterior: p(z, ’LU)

p(zlw) = S (2, w)

e We can write analytic form using model assumptions

e But cannot evaluate on any real corpus: sum of K" terms in denominator is
intractable (n is number of words in entire corpus)

e Must use an approximation method: can use Gibbs sampling

e |[terative algorithm that is guaranteed to converge to the true posterior
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Gibbs sampling with approximate count statistics

T iterations; each iteration involves sampling a new topic assignment for each
word in the corpus

The distribution that the topic assignment is sampled from is constantly being
updated

5 data structures involved: one is ny ,, @ matrix in RN containing the
number of times word w appears in topic k. Problem: too large for large
vocabularies, N.

Core idea: can we approximate ny ,, with K count-min sketches? How is the
posterior distribution, p(z|w) = Zi (;E;U,)w) affected? Can we still recover the topics
in a corpus?
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Topic-word probabilities and sketching

1
e With probability 1 — —, counts are in range:

n}crl’;)e < nsketch < ntrue + = Z ntrue
ntrue + n
z ntrue + N,r’

k ,true _

e Now: we want to estimate topic-word probabilities, By,

e \With same high probability, these are in range:
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Topic-word probabilities and sketching

B, Sketch Value
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LDA Toy Corpus: 100,000 words; N = 2500

LDA Sparse Topic Distributions

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5

Topic 6 Topic 7 Topic 8 Topic 9 Topic 10
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LDA Toy Corpus: 100,000 words; N = 2500

35 (of 1000) Sampled Documents
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Results: Conditional Loglikelihood of Corpus

(Larger values are better)

Conditional loglikelihood of corpus, log(P(w|z))
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Recall Topics:

Topic 1 Topic 2 Topic 3 Topic 4
Topic 6 Topic 7 Topic 8 Topic 9

Topic 5

Topic 10

P
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Results: Recovered Topics - without sketch
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Results: Recovered Topics - with sketch

(memory use % of vocabulary: H =2, J = 1000)
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Conclusions and Future Directions

Demonstrated incorporation of count-min sketch into inference algorithms for
two ubiquitous probabilistic models.
Useful when number of unique tokens (DM case) or vocabulary size (LDA) is

too large to be stored in memory

Were able to recover posterior probabilities in both cases:
o DM-case: stream of M tokens. Were able to recover probability, 6,, that ki unique token

appears in stream
o LDA: were able to recover latent topics in toy corpus

In future:
o Applying LDA sketch-based inference on different document corpuses: corpuses with denser

topics and on real-world corpuses

o Investigating additional sketches: we are interested in proportions, not counts. Are there
sketches that are better at preserving proportions?

o Applying LDA sketch-based inference in streaming setting



Thanks!



Dirichlet-multinomial (DM) model

Multinomial occupancy scheme: K bins, M balls thrown independently in each bin
Probability 8, of landing into the kt" bin

Let x4,...,xp be M tokens in [K]. Likelihood has a Categorical(0) distribution:

P(X1,....Xm | ) = [n[ ]k 010 = [« 6%, where ¢y := # of balls in kth bin

Under the DM model, we assume that the probabilities are random: 6 ~ Dirichletk(a)

0 € AKX
Goal is to compute the posterior distribution using Bayes’ rule:

P(O | X1,...,Xm) = P(8) p(X1,...,Xm | @) = Dirichlet(6 | « + ¢c), where c =
(C1,...,Ck)

Predictive distribution: p(Xy+1 = K | X1,...,Xm) =j P(Xm+1) P( O | X1,...,Xm) dO
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CM sketch simulations on multinomial tokens

M=10,000; K=10,000
N hash functions, J range
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