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Modern data analysis problems
● Massive in size, possible infinite data stream
● High dimensional
● Complex models are needed for modeling

Probabilistic modeling and Bayesian inference
● Powerful for identifying interpretable, latent structure in data
● Provides a framework for making predictions about future observations
● Incorporate prior knowledge, share statistical strength across model
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This project: we explore approximating the sufficient statistics in probabilistic  
models using a hashing-based probabilistic data structure (count-min sketch) 
perform Bayesian inference in two ubiquitous probabilistic models



Count-min sketch
Data stream x1, …, xM of tokens in {1,...,K}

N hash functions randomly generated from a pairwise-independent hash family

hn: [K] -> [J],    J << K,    n=1,...,N

Data structure: N x J counter array: C[n,j]

Update(C, k): hash k and update the counts

C[n,hn(k)] += 1,    for all n=1,...,N

Query(C, k): returns estimate for the count of k

For all n, return the minimum count C[n,hn(k)]

[Cormode and Muthukrishnan, 2003]
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1. The estimated count ≥ true count

observed count = true count + counts of colliding tokens

⇒ estimated count = minimum observed count > true count

1. With probability 1 - exp(-N), 

estimated count ≤ true count + e/J * M

Proof sketch: 
Xkn := sum of counts colliding with k
E[Xkn]  ≤ 1/J * M   (expected colliding mass)
By Markov’s inequality, 

Pr(∀n, {Xkn > e * E[Xkn]}) ≤ exp(-N)

Count-min sketch analysis [Cormode and Muthukrishnan, 2003]
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Dirichlet-multinomial (DM) model
Multinomial occupancy scheme: K bins, M balls thrown independently in each bin
Probability !k of landing into the kth bin

Let x1,...,xM ~ Multinomial(θ). (M tokens in [K])

Under the DM model, we assume that the probabilities are random: ! ~ DirichletK(α)

Goal is to compute the posterior distribution using Bayes’ rule:

p(! | x1,...,xM) = p(!) p(x1,...,xM | !) = Dirichlet(! | " + c),   where c = 
(c1,...,ck)

Predictive distribution: p(xM+1 = k | x1,...,xM) = ∫ p(xM+1) p( ! | x1,...,xM) d!

! ∈ △K
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Sketching multinomial counts
For the DM model, we just have to keep track of the posterior through the 
sufficient statistic vector c, i.e., the counts of the tokens.

In a streaming setting, we can directly apply the CMsketch for inference: 

for t = 1, 2, ...

1. Observe xt

2. Update(C, xt): (hash xt and update all the counters)
3. Evaluate predictive distribution

p(xM+1= k | x1,...,xM) = (! + ĉk) (∑j !j + ĉj)-1

6



CM sketch simulations on multinomial tokens
Generated 10K size dataset from the Dirichlet-multinomial model

Applied the CMsketch (N hash functions with range J) to approximate the counts
7

K=1000 K=10,000



CM sketch simulations on multinomial tokens
M=10,000; K=1000 
N hash functions, J range

epsilon(k) := (ĉk- ck) / M

plotted mean over all k 
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For 1 trial:

too 
much 
space

1 hash function: errors are 
much worse, more variance 
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CM sketch simulations on multinomial tokens
M=10,000; K=1000; N hash functions, J range

MAE(ĉ,c) =  sum(ĉk- ck) / K
For 20 trials: (mean over trials, sd computed over trials)
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CM sketch simulations on multinomial tokens
M=10,000; K=10,000; 
N hash functions, J=1000

Posterior approximation: 
1-step ahead 
predictive probabilities 
(streaming)
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CM sketch simulations on multinomial tokens
M=10,000; K=10,000; N hash functions, J range
Posterior approximation: MAP estimate (the mode of posterior distribution)
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Topic modeling with Latent Dirichlet Allocation (LDA)
● Document corpus: D documents, over vocabulary set [N]
● Topic: probability distribution over words in the vocabulary set
● Goal: uncover K topics in corpus

8

Image: [Blei, 2012]



Topic modeling with Latent Dirichlet Allocation (LDA)
● K topics, D documents (each of length n words)
● Each topic is a distribution over the words in the vocabulary set [N]

Draw topic !k ~ DirichletN(.),   k = 1,...,K,     (!k ∈ △N)

● Each document contains some proportion of the topics

Draw $d ~ DirichletK(.),     d = 1,..., D,    ($d∈ △K)

● For the jth word in document d, assign that word to a topic

Draw zdj ~ Multinomial($d),    j = 1, …, n,    (zdj∈ [K])

● Each word in a document is then drawn from that topic

Draw wdj ~ Multinomial(!i), where i = zdj,    j = 1,...n,    (wdj ∈ [N])
9



Gibbs sampling with approximate count statistics
● We want to know the posterior: 

● We can write analytic form using model assumptions
● But cannot evaluate on any real corpus: sum of Kn terms in denominator is 

intractable (n is number of words in entire corpus)
● Must use an approximation method: can use Gibbs sampling
● Iterative algorithm that is guaranteed to converge to the true posterior

10



● T iterations; each iteration involves sampling a new topic assignment for each 
word in the corpus

● The distribution that the topic assignment is sampled from is constantly being 
updated

● 5 data structures involved: one is nk, w, a matrix in RKxN, containing the 
number of times word w appears in topic k. Problem: too large for large 
vocabularies, N.

● Core idea: can we approximate nk, w with K count-min sketches? How is the 
posterior distribution,                          affected?  Can we still recover the topics 
in a corpus?

Gibbs sampling with approximate count statistics

11



Topic-word probabilities and sketching
● With probability            , counts are in range:

● Now: we want to estimate topic-word probabilities,

● With same high probability, these are in range:
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Topic-word probabilities and sketching
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N = 2500 
(vocabulary size)

J: range of hash 
functions



LDA Toy Corpus: 100,000 words; N = 2500
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LDA Toy Corpus: 100,000 words; N = 2500
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Results: Conditional Loglikelihood of Corpus 
(Larger values are better)
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Recall Topics:
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Results: Recovered Topics - without sketch
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Results: Recovered Topics - with sketch 
(memory use ⅘ of vocabulary: H = 2, J = 1000)
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Conclusions and Future Directions

● Demonstrated incorporation of count-min sketch into inference algorithms for 

two ubiquitous probabilistic models. 

● Useful when number of unique tokens (DM case) or vocabulary size (LDA) is 

too large to be stored in memory

● Were able to recover posterior probabilities in both cases:
○ DM-case: stream of M tokens. Were able to recover probability, θk, that kth unique token 

appears in stream

○ LDA: were able to recover latent topics in toy corpus

● In future: 
○ Applying LDA sketch-based inference on different document corpuses: corpuses with denser 

topics and on real-world corpuses

○ Investigating additional sketches: we are interested in proportions, not counts. Are there 

sketches that are better at preserving proportions?

○ Applying LDA sketch-based inference in streaming setting 

20



Thanks!
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