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Abstract
Since the early 2000s, it has been known that breast cancers can be classified into at least four distinct subtypes based on gene
expression data1, 2. These subtypes have unique risk-factors and survival rates associated with them, and a diagnosis of the
breast cancer subtype can be useful for suggesting the correct treatment for the patient3. However, the original studies were
limited in their value to the clinic because of the number of gene expression measurements required to diagnose these subtypes.
In 2009, researchers reduced the number of genes expression measurements required to predict subtype from the 534 genes
used in Sorlie et al.1 to a group of just 50 genes (known hereafter as the ”PAM50” genes). Since then, researchers have tried
to reduce the number of biomarkers required to predict subtype even further4, although analysis of PAM50 expression data
remains the canonical method for characterizing subtype5.

In this paper, we explore classification of breast cancer tumors using proteomic data. We train a classifier to predict breast
cancer subtype (when it is labeled by a patient’s mRNA expression for the ”PAM50” genes) using the patient’s expression
levels for 12,553 proteins. In doing so, we are able to explore whether there are smaller groups of proteins, compared to genes,
that can predict breast cancer subtype. Furthermore, working with biological data that is highly sparse, we are able to compare
the performance of the different feature selection methods we used to answer this question.

Overall, we are able to achieve a 5-fold cross-validation accuracy of 86.2%, and an F1 score of 85.8%, using a Random Forest
classifier and a feature set of 14 proteins, only 2 of which are products of PAM50 genes. This result suggests that there may
indeed be smaller groups of biomarkers that are predictive of breast cancer subtype. We explore the biological significance of
these 14 proteins in text. Lastly, the performance of feature selection methods that did not linearly transform the data before
performing classification was vastly superior to feature selection methods (like PCA and factor analysis) that did, and the
accuracy difference between a classifier trained on PCA components and our best feature selection method, RFE, was as much
as 20%. While there is an intuitive explanation for this result (PCA and factor analysis methods do not preserve between-class
variance), it is an interesting given the prevalence of these methods in dimensionality reduction6.

Methods

Data
Our data is from a recent publication7. For 77 patients, we have measurements of the log-scaled relative abundance of 12,553
proteins (collected through mass spectrometry). However, there are some missing values, and thus for the analysis below we
focus only on the 8022 proteins which are fully represented across all patients. Of the 100 PAM50 proteins, 43 are represented
in the 12,553 set, and 26 are in the reduced 8022 set. We also have clinical features describing the patients, including their
breast cancer intrinsic subtype (as defined by PAM50 mRNA expression), ER status (presence of estrogen hormone receptors),
PR status (presence of progesterone receptors), HER2 status (whether the breast cancer cells produce the HER2 protein), tumor
status (indicative of tumor size), age of the patient, number of affected lymph nodes, and AJCC (American Joint Committee
on Cancer) stage (Figure 1). In order to control for irregular variance between protein expression levels, we normalized
column-wise to zero mean and unit variance before training.

Feature Selection and Dimensionality Reduction
Even after removing proteins with missing values, we still have high dimensional data. We anticipate that, amongst the 8029
features (8022 proteins and 7 clinical metrics) that we can use to predict breast cancer subtype, there are features which are
irrelevant (not predictive of subtype), as well as features that are highly correlated amongst themselves. Much work has been
done to show that classification accuracy can be improved by removing such features from the analysis8–10. In this project, we
explored the use of 6 feature selection algorithms: PCA and factor analysis, both of which linearly transformed the features;
fast correlation-based filtering (FCBF)11 and univariate feature selection (KBest)12, which selected features based on their
value of a chosen statistic; and recursive feature elimination (RFE)13, and select from model (SFE) methods, which used feature
importance values specific to the random-forest classifier14. We will now describe each of these feature selection methods in
more detail.
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Figure 1. Histograms of clinical metrics across all 77 patient tumor samples. In green: the PAM50 subtype we seek to predict.
In order to cope with the unbalanced subtype groups, we report both accuracy and F1 scores in what follows
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Univariate Feature Selection (KBest)
Let X ∈Rm×p represent our training data (corresponding to 80% of the 77 samples in each of the five folds), and Y ∈Rm be the
corresponding breast cancer subtype labels for each of these m patients. The “KBest” feature selection method ranks predictors
according to their ANOVA F-statistic, and selects the k features with the highest ANOVA F-statistic. The ANOVA F-statistic
calculates the ratio of the between-class variance for a predictor compared to the within class variance for that predictor. More
formally, suppose we are interested in calculating ANOVA F for predictor k. Then we restrict our attention to column k of the
training matrix: Xik for 1≤ i≤m; for simplicity, let’s drop the second index in what follows and refer to elements of this vector
using only the first index i. Furthermore, let’s suppose that there are C distinct subtypes represented in vector Y and that there
are nc patients in class c. Then:

F =
m−C
C−1

∑
C
c=1 nc

[
E(Xi|Yi = c)−E(Xi)

]2

∑
C
c=1 ∑

m
i=1

[
(Xi|Yi = c)−E(Xi|Yi = c)

]2

Fast Correlation Based Filtering (FCBF)
The algorithm for Fast Correlation Based Filtering, as described in the original paper by Yu and Liu11, is as follows:

1. For each feature k in [p], calculate SU(X.k,Y ), the symmetrical uncertainty

2. Discard features for which the symmetrical uncertainty is below some threshold, T

3. Order the remaining features by descending value of symmetrical uncertainty

4. Iterate through the ordered features and discard features X·k′ for which SU(X·k,X·k′) ≥ SU(X·k,Y ) and SU(X·k,Y ) ≥
SU(X·k′ ,Y ).

5. Return the remaining features

where the “symmetrical uncertainty” is calculated in terms of the information gain, IG(X |Y ) and entropies H(X), H(Y ) as
follows:

S(X·k,Y ) = 2[
IG(X·k|Y )

H(X·k)+H(Y )
]

where IG(X·k|Y ) = H(X·k)−H(X·k|Y ), H(X·k) =−∑i P(xi)log2(P(xi)) and H(X·k|Y ) =−∑ j P(y j)∑i P(xi|y j)log2(P(xi|y j)).

The larger the value of the symmetrical uncertainty, the more predictive a feature X·k is of class Y . The FCBF method
keeps only features that have a symmetrical uncertainty value above a specified threshold, and which are not highly correlated
with other features, as measured by the pairwise symmetrical uncertainty of features.

Model dependent Feature Selection
The Random Forest algorithm assigns to each feature, a feature importance. For example, Louppe et al.15 define the importance
of feature X·k as follows:

Imp(X·k) =
1

NT
∑
T

∑
t∈T :v(st )X·k

p(t)∆i(st , t)

where NT is the number of trees, the first sum is over all trees, and the second sum is over the nodes t in a particular tree
such that the splitting variable, v(st), is our feature of interest X·k. Furthermore, p(t) =

mt

m
is the fraction of training samples

reaching node t, and ∆i(st , t) = i(t)− pLi(tL)− pRi(tR) is the change in entropy (or alternatively the Giri index) moving from
one level of the decision tree to the next. The entropy at a particular node t is:

i(t) =
C

∑
c=1

Pr(Yj = c|X j·made it to node t) log(Pr(Yj = c|X j·made it to node t))

Then the Select From Model (SFM) feature selection method keeps all features with a feature importance above a given
threshold, and the Recursive Feature Elimination (RFE) feature selection method stepwise removes the α features with the
worst feature importance values until it has only k features remaining (where α and k are hyperparameters).
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Latent Structure
Finally, we investigated PCA and Factor Analysis (FA) methods to project our data onto a lower dimensional subspace before
performing classification. In both of these models, we assume:

Xi· = µ +Λ fi +ui

where Xi· ∈ R1×p is a row in our data matrix, µ ∈ R1×p, fi ∈ R1×k is the projection of Xi· onto the k-dimensional subspace
defined by Λ ∈ Rk×p, which is the factor loading matrix. Furthermore, ui ∈ R1×p is the error vector. In PCA, we obtain Λ by
minimizing the residuals:

ΛPCA = argminΛ

N

∑
i=1
||(Xi·−µ−Λ fi)||2,

whereas in Factor Analysis, we assume that fi ∼N (0, I), ui ∼N (0,Ψ) where Ψii = σi and Ψi j = 0 for i 6= j, and that fi and
ui are independent. We calculate ΛFA using maximum-likelihood estimation and the EM-algorithm.

Classification
We paired feature selection methods with some classification algorithms that have been applied successfully in genomics
contexts previously16, 17. These included support vector machines (SVMs), logistic regression, and random forest classifiers
(RF). In binary classification, logistic regression and support vector machines fit a linear boundary to separate the two classes.
They differ only in the cost function that is minimized so as to fit the parameters of the linear boundary. To extend logistic
regression and SVM classifiers to the multi-class setting, 4 one-vs-rest binary classifiers were trained, and an individual was
assigned to the subtype that resulted in the greatest margin. In comparison, random forest fits a forest of decision trees, each of
which uses a random subset of the feature space. This enables it to learn much more complex decision boundaries than the
other classifiers used.

Results
5-fold cross-validation was used to produce all results.

Classifier Selection
In the interest of cutting down the amount of training time required, we first compared classification algorithms in order to
choose one to move forward with. Random Forest outperformed the other two algorithms consistently in F1 score (Table 1),
despite the fact that its hyperparameter space was explored in much less depth than those of the other two classifiers.

Classifier KBest RFE SFM
Random Forest 0.759 0.714 0.721

Logistic Regression 0.711 0.717 0.673
Linear SVM 0.683 0.727 0.682

Table 1. Comparison of performance across classifiers and feature selection methods, with each entry optimized over a coarse
hyperparameter grid. The superior performance of random forest for a range of feature selection methods led to us using it
alone for the majority of our analyses.

The disparity in performance between these algorithms can likely be attributed to the fact that while the other classifiers employ
linear decision thresholds, Random Forest is able to learn a highly nonlinear decision surface. Additionally, Random Forest as
an ensemble method naturally supports the multiclass paradigm, while the others resort to training a one-vs-rest classifier for
each class, which likely impacts performance. All further analysis was conducted using Random Forest classifiers.

Clinical Variables as Predictors
Another dimension we explored was the addition of clinical variables as features - specifically, those 7 that were previously
mentioned - in order to improve prediction of breast cancer subtype. Interestingly, we found that there was only a marginal
improvement in accuracy and F1-score with the addition of the clinical variables, even when classifiers were specifically
optimized on this enhanced dataset (Figure 2). This implies that while the clinical variables are indeed useful, most of their
predictive power is encapsulated in the protein data. Because we are primarily interested in finding the most predictive proteins
rather than finding the absolute maximum accuracy, we decided not to include the clinical variables in further analysis: because
they are naturally more informative than most individual proteins, they would likely ”mask” proteins of interest by effectively
replacing them as predictors during the feature selection processes.
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Figure 2. The addition of clinical variables as features to the protein dataset marginally improved classification accuracy and
F1 score. This implies that while the clinical variables are indeed useful, most of the predictive power is encapsulated in the
protein data.

Predictive Power of Proteins for Breast Cancer Subtype
We now present the first of our core results in this paper. In particular, in Table 2 below, we compare the performance of our six
feature selection methods at predicting breast cancer subtype, and the number of features that are selected by each method in
order to predict subtype. Figure 3 shows each of the 100 trials for each feature selection method that were used to calculate
average accuracy and F1 scores.

Feature Set Accuracy F1 score Num. features PAM50 proteins
RFE 0.860 0.858 121 8∗

FCBF 0.839 0.833 26 2∗

KBest 0.824 0.816 170 14∗

SFM 0.781 0.768 1028 18∗

FA 0.675 0.605 21 -
PCA 0.662 0.615 26 -

Table 2. Classifier performance across feature sets. Each row is optimized over the possible number of features admitted by
that dimensionality reduction method. Accuracy and F1 scores shown represent 100 trials (shown in Figure 3) of 5-fold
cross-validation (averaged locally and then across trials; standard error < .0029 for all values reported in table). Statistical
significance for the selection of PAM50 proteins was calculated using a hypergeometric test and ’*’ indicates significance at the
α = 0.01 level.

There are several interesting facets of this table that we will now discuss. Firstly, we note the obvious: proteins are predictive of
breast cancer subtype. This may have been expected given that proteins are ”coded for” by genes that are highly predictive of
subtype, but it is reassuring to see this confirmed in our table. Secondly, small groups of proteins are predictive of breast cancer
subtype. We are able to achieve 84% accuracy with the FCBF method, which selects only 26 proteins. This provides evidence
that a smaller group of biomarkers compared to the PAM50 proteins may be able to identify breast subtype. Thirdly, PAM50
products are still over-represented in the most-predictive features. For all methods, the PAM50 proteins are over-represented
than they would have been had inclusion in the feature set been determined by random chance. Finally, factor analysis and PCA
dimensionality reduction methods fare poorly. In particular, the accuracy and F1 scores for PCA are about 20% lower than
those for RFE. Given the omnipresence of PCA and factor analysis as tools for dimensionality reduction6, this result initially
surprised us, so we investigated it further.
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Figure 3. Top: box plots of accuracy (left) and F1 score (right) by feature set. Bottom: F1 score by accuracy, where each
point is a single trial.

PCA and Factor Analysis: methods that don’t preserve between-class variance
The explanation for why the accuracies and F1 scores reported in Table 2 are 20% lower than for the other feature selection
methods reported in the table is simple: PCA and factor analysis transform features without preserving between-class variance.
In the specific case of PCA, preserving global variance does not equate to preserving between-class variance: Figure 4 shows
the variation amongst classes for the 50 different proteins with the highest expression divergence across subtypes. If this figure
is compared to Figure 5, which shows variation across subtypes for the first 30 PCA components, we see that, while PCA
components 1-5 do allow us to differentiate some breast cancer subtypes, overall PCA has reduced the amount of between-class
variance.

Most Predictive Proteins
While we have already noted that PAM50 proteins were over-represented in our feature sets of Table 2, we also went about
exploring the set of features that were common to all feature selection algorithms (see Figure 6).

In order to determine the significance of the 14 proteins at the intersection of all feature sets, we conducted two experiments on
reduced feature sets (Figure 7). First, we removed proteins from each feature set and tested how accuracy and F1 score changed
when (i) the 14 proteins in the intersection of all sets (Figure 7, ”Reduced”) were removed, and (ii) when only the proteins
that were exclusive to each method for prediction, i.e. the non-overlapping sections of the Venn diagram were used (Figure 7,
”Exclusive”). Both accuracy and F1 score dropped significantly at each step in all feature sets (all p-values < 10−5), implying
that both the central intersection and other shared proteins had considerable predictive power. Then, we decided to directly
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Figure 4. Here we show the mean (scaled) protein expression values for each of the 4 breast cancer subtypes and for the 50
proteins exhibiting the most variation across subtypes. From this plot, we can see that it may be easier to differentiate Basal and
HER2 subtypes, while protein expression values for Luminal A and Luminal B subtypes tend to be similar to one another.

run prediction using only the 14 proteins in the intersection as features. Strikingly, this small feature set with only 2 PAM50
proteins outperformed all but the best feature selection method (in accuracy) with an accuracy of 86.25% (p = .422 for RFE,
p < 10−17 for the other feature sets).

Intersection proteins in the literature
After observing the predictive power of the 14 proteins in the intersection, we decided to do a cursory review of the literature
for the proteins in the intersection (listed by their RefSeq IDs).

Of the 14 proteins in the intersection of all feature sets, two of them are PAM50 proteins:

• NP 004487: product of FOX1, a well-known cancer gene - strongly implicated in various types of cancers, including
gastric18, prostate19, pancreatic20, and thyroid21, with a range of context-specific functional roles.

• NP 001035932: melanophilin isoform 2 - a SNP in this gene has been characterized as a putative risk locus for prostate
cancer22, 23

Of the 12 remaining proteins, 3 have already been related to breast cancer:

• NP 004243: NHERF1, a sodium/hydrogen exchanger regulatory cofactor - suppresses lung cancer cell migration24,
inhibits adhesion and migration of breast and cervical cancer cell lines25

• NP 789783: AGR3 precursor - strongly associated with breast cancer and was suggested as a potential biomarker for
blood-based early detection26, plays a complex role in various cancers27

• NP 001171551: PVT1-derived miR-1207-5p - promotes breast cancer cell growth28

6 others have known involvement in other cancers:

• NP 001243806: Kank1 - candidate tumor suppressor gene in renal cell carcinoma29, and has known functions in
nasopharyngeal carcinoma30 and melanoma31

• NP 055945: MDR1 - associated with outcomes in gastric cancer32, is abnormally expressed in CD34+ leukemic
population vs. CD34- in childhood acute myeloid leukemia33
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Figure 5. We used PCA in order to project our data onto a lower dimensional subspace, whilst still maintaining maximal
variation. In this plot, we project our data onto PCA components 1-30 and ask whether our projections offer us the same
leverage to detect breast cancer subtypes as the proteins of Figure 4. While PCA components 1-5 do allow us to differentiate
some breast cancer subtypes, it seems that we should restrict ourselves to feature selection methods which do not transform the
data and reduce the between-class variance in the process.

• NP 002291: LDHB - subunit of a metabolic enzyme that catalyzes interconversion between pyruvate and lactate -
associated with lysosome activity and autophagy in cancer cell lines34, low levels of this protein associated with better
outcomes35

• NP 620164: CMBL homolog protein - overexpressed in esophageal squamous cell carcinoma36

• NP 001177666: NF1B - developmental transcription factor - epigenetic regulator in cancer37, mediates melanoma cell
migration and invasion38, inversely related to tumor aggressiveness in lung adenocarcinoma39, drives metastatic small
cell lung cancer in mice40

• NP 001161067: AMACR - expression of this gene (and this isoform in particular) has been associated with prostate
cancer41–43

Finally, the remaining 3 proteins have little or no evidence linking them to cancer:

• NP 001002295: GATA-3 - transcription factor, important for regulation of T-cell development and endothelial cell
biology44, 45, can be used to distinguish clear cell papillary renal cell carcinomas from morphologically similar diagnoses46

• NP 055680: Condensin complex subunit 1 - involved in chromatin condensation at mitosis47

• NP 115910: cytoplasmic protein in the PAR6 family involved in asymmetric cell division and cell polarization48–50

Discussion and Future Directions
Overall, we have demonstrated that the abundance values for small groups of proteins are highly predictive of breast cancer
subtype. Our analysis offers hope that, in future, we may be able to reduce the number of biomarkers required for breast cancer
subtype diagnosis from 50 (the status quo5) to between 14 and 26, making it less costly, and less time- and labor-intensive to
obtain a subtype diagnosis. Interestingly, of the 14 proteins that were most effective at predicting subtype, many of them had
not yet been linked to breast cancer, and a few had no previous relationship to cancer at all. Further investigation is needed to
explore whether these proteins display a pattern of involvement across a larger population of breast cancer patients, and to
characterize their value in distinguishing subtypes and their role in the disease.
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Figure 6. Venn-diagram visualizing the overlap between the reduced feature sets of Table 2 (for methods that select a subset
of the original features). The circled region in the center represents the proteins in all 4 of these feature sets.

While an accuracy of 86% is reasonably high, we believe this could be improved. Having a small number of patients
can make it difficult to discern signal from noise, and using more patient samples may enable us to reduce the uncertainty in
our predictions, or to learn more complex relationships amongst proteins and clinical observations. Additionally, one could also
improve performance by applying methods to take advantage of additional information - it is possible that some of the 4531
removed proteins (due to missing values) could have been as predictive of subtype as our ultimate set of 14, especially since the
proteins removed in this filtering step include 17 products of PAM50 genes (43 were present originally).

Lastly, one could employ sparse factor analysis methods, such as those described in Bhattacharya and Dunson51, to ex-
plore additional latent structure in our dataset. At the fundamental level, there could be novel classifications for breast cancer
that can be inferred from this proteomic data, that go beyond the known classifications that were originally inferred from gene
expression analysis.
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Figure 7. Performance of Random Forest classifier as feature sets are reduced (each point represents 100 trials of 5-fold
cross-validation; error bars are included but are covered by the points). Intersect points included for comparison, and are simply
constant across the plot.
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